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SYNOPSIS 

The physical model of the reactive dyeing system proposed by Sada et al. is extended in 
this communication to the case with a concentration-dependent diffusion coefficient of 
dye. The present model with an exponential concentration dependence of the diffusion 
coefficient is shown to predict the observed data better than did the previous one with a 
constant diffusion coefficient. Effects of the concentration dependence of the diffusion 
coefficient, dye reaction rate, degree of mixing, and volume ratio of fiber substrate to the 
dyebath on the rate of fractional fiber fixation and the dye concentration in the dyebath 
are investigated parametrically. It has been found that the effect of the volume ratio of the 
fiber substrate to the dyebath on the fractional fiber fixation is not of the same order of 
magnitude as those of the other three factors. 

INTRODUCTION 

The diffusion of dye in natural or man-made fibers 
has been a process of continuous interest to re- 
searchers in the textile industries. The process is 
important in that understanding of the dye diffusion 
and reaction phenomena in the fiber permits better 
control of the desired tone of color in the fiber by 
optimal selection of operating conditions. 

Depending on the type of dye employed, the 
dyeing process can either be a reactive type or an 
adsorptive type. In the adsorptive dyeing process, 
the dye (cationic, acid, or direct type) is adsorbed 
onto the fiber substrate, obeying either the Langmuir 
or Freundlich adsorption isotherm. In the reactive 
dyeing process, the reactive dyes form covalent 
bonds with the reactive sites of the fiber substrate. 
In many previous investigations, '-17 both types of 
dyeing processes have been examined. A common 
assumption of the physical models adopted by the 
previous investigators is that the diffusion coefficient 
of dye is a constant. This assumption allows sim- 
plification of the physical models in numerical pre- 
dictions of the behaviors of dye diffusion in the fiber 
substrate and the rate of dye fixation. However, 
there has been experimental e ~ i d e n c e ~ ~ ~ * ~ ~ ~ . ' ~  that the 
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diffusion coefficient of the dye in the fiber substrate 
is not a constant, but, rather, a strong function of 
the dye concentration. Therefore, to faithfully pre- 
dict the dye diffusion process, consideration of the 
concentration dependence of the diffusion coefficient 
is necessary. The purpose of this study is to extend 
the physical model of Sada et al.1i-i5~i7 for reactive 
dyeing systems by including the concentration de- 
pendence of dye diffusion inside the fiber substrate. 
As will be shown later, the present extended model 
appears to predict significantly better the experi- 
mental dye concentration profiles than did the pre- 
vious model with a constant diffusion coefficient. 

CONCENTRATION-DEPENDENT DIFFUSION 
COEFFICIENT OF DYE 

Two of the most widely used expressions for the 
concentration-dependent diffusion coefficient are 
represented by 

and 

D(Ca) = Doexp al - ( 3 
1743 
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where C, is the dye concentration in the liquid; Co, 
a reference dye concentration; Do, the base diffusion 
coefficient; and al, a constant parameter. Although 
they are relatively easy to use, the above equations 
may not be able to represent well some complicated 
concentration dependence of the diffusion coeffi- 
cient. Hence, the following more general functional 
relationship is suggested here: 

D( C,)  = Doexp [ al (5) + u z ( 2 ) ” +  * * .I ( 2 )  

in which ai are constant parameters to be deter- 
mined. To demonstrate the applicability of eq. (2 ) ,  
two sets of experimental data of Ostrowska et al.9p10 
were employed to determine the parameters. The 
results of the least-square curve fitting are shown 
in Figures 1 and 2. Although a simple exponential 
function is seen to represent well the diffusion coef- 
ficient of Synthene Scarlet P3GL in polyester fiber 
( Fig. 1 ) , a more complicated form of eq. ( 2 ) is needed 
to fit well the diffusion coefficient of Anilana Red 
BL in polyester fiber (Fig. 2 ) . The diffusion coef- 
ficient of Synthene Scarlet P3GL increases relatively 
mildly with an increase in its dimensionless con- 
centration, as seen in Figure 1. But that of Anilana 
Red BL in Figure 2 appears to increase very rapidly 
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Figure 1 Concentration-dependent diffusion coefficient 
of Synthene Scarlet P3GL in polyester fiber: (-) D (Y,) 
= 0.585 X lO-”exp( 1.378Ya) cm’/s. 
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Figure 2 Concentration-dependent diffusion coefficient 
of Anilana Red BL in polyester fiber: (-) D(Y,) 
= 1.313 X 10-’3exp(4.5Y, - 8.64Yz + 6.63Y:) cm2/s. 

when its dimensionless concentration is larger than 
0.6. It is suspected that there may be significant 
changes in the physical or chemical properties of 
the polyester fiber at that high dye concentration 
level. 

With an appropriate number of terms in the ex- 
ponential polynomial function, eq. ( 2 )  is capable of 
fitting a wide variety of highly complicated diffusion 
coefficients. As an alternative, a straight polynomial 
of the following form can also be used 

However, eqs. ( 2 )  and (3) are, in essence, the same, 
since expansion of eq. ( 2 )  in the Taylor series will 
automatically lead to eq. (3). For the present study, 
eq. ( 2 )  is adopted. 

PHYSICAL MODEL OF REACTIVE 
DYEING PROCESS 

Beside the dye diffusion in the dyebath and the fiber 
substrate, there are two other major processes oc- 
curring in a reactive dyeing system: the dye fixation 
in the fiber substrate and the dye hydrolysis in the 
liquid phase. Dye hydrolysis is caused by the reaction 
of dye with water, rendering less dye being available 
for fixation in the reactive sites of the fiber substrate. 
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Hence, the control of proper dyeing conditions is 
necessary to ensure that the majority of dye in the 
dyebath is consumed by fiber fixation rather than 
by hydrolysis. However, no quantitative relation- 
ships between the dye fixation and hydrolysis pro- 
cesses have been available. Hence, the simulation 
approach seems to offer the most effective means 
for understanding the reactive dyeing system. 

The dye reaction in the fiber substrate is assumed 
to be a second-order reaction with respect to the 
concentrations of dye and reactive sites, whereas 
the dye hydrolysis is assumed to obey a first-order 
 kinetic^.'^,'^ With this assumption, the dye diffu- 
sion/reaction system then can be represented by 

where C, is the dye concentration in the liquid phase; 
C,, the concentration of reactive sites in the fiber 
,substrate; D ( C,) , the concentration-dependent dif- 
fusion coefficient; k and k,,  the reaction and hydro- 
lysis rate coefficients; x ,  the spatial coordinate; and 
t ,  the time. The rate of reactive site disappearance 
or the rate of fiber fixation is given by 

- -mkC,C, acs 
at 
-- 

in which m is the stoichiometric coefficient for the 
reaction between dye and the fiber substrate. In ad- 
dition to the two above equations, a third equation 
governing the dye consumption in the dyebath can 
be written as 

which is simply the dye balance in the dyebath. In 
eq. ( 6 ) ,  C b  is the dye concentration in the dyebath; 
V, the bath volume; and A ,  the total cross-sectional 
area of the fiber substrate. 

The initial and boundary conditions for the above 
governing dye balance equations are given by 

where C ,  and C, are, respectively, the initial con- 
centration of reactive sites in the fiber substrate and 
the initial dye concentration in the dyebath; kL, the 
external mass transfer resistance of dye; and L ,  the 
thickness of the fiber substrate layer. Note that the 
concentration-dependent diffusion coefficient D ( C, ) 
in eqs. ( 4 ) ,  (61, and (7b) is represented by eq. ( l b )  
or (2) .  

To facilitate the numerical computations, the 
above differential equations and inital and boundary 
conditions are rendered into the following dimen- 
sionless form: 

- MY, (Y ,  + S )  (8a) 

subject to 

0 = 0; Y ,  = 0, Y ,  = 1, Yb = 1 (9a) 

The above set of nonlinear differential equations was 
solved by the orthogonal collocation methodlg in the 
present study. The essence of this method is to ap- 
proximate the spatial differential terms by the or- 
thogonal Legendre polynomial at certain “opti- 
mized” points” (i.e., the roots of the n-th-order Le- 
gendre polynomial). With such an approximation, 
the partial differential equations were transformed 
into a set of ordinary differential equations that was 
simultaneously integrated by the Runge-Kutta-Gill 
method with precision. 

Two items of particular interest in the physical 
simulation are the local and total fractional fixations 
of the fiber substrate. The local fractional fixation 
is defined as 
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and the total fixation is given by Lop 
\ I I I I I 

These quantities represent the extent of the fiber 
substrate that has been dyed or “fixed” at a partic- 
ular depth of fiber and at any time during the dyeing 
period. 

DISCUSSION 

Reactive dyeing experiments of cellophane films by 
C.I. Reactive Orange I have been conducted by Mo- 
tomura and M ~ r i t a . ~  Those investigators carried out 
the cellulose dyeings in a very large dyebath that was 
kept essentially at a constant dye concentration 
throughout the dyeing period. In addition, the bath 
was maintained well mixed during the experimental 
runs, reducing the external mass transfer resistance 
of dye to a minimum, i.e., Sh = co . The experiment 
thus represents a simplification of the reactive 
dyeing system modeled in the above section. Under 
these conditions, eq. (8c) reduces to 
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Figure 3 Comparison of predicted and experimen- 
tal concentration profiles of active and immobilized 
C.I. Reactive Orange I at  pH = 8.8, 0 = 0.06, and f (  Yo)  
= exp(0.075Y.). 
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Figure 4 Comparison of predicted and experimental 
concentration profiles of active and immobilized C.I. 
Reactive Orange I at pH = 8.8, 0 = 0.085, and f (  Y,) 
= exp (0.075 Yo) .  

or 

and the boundary condition (9c) becomes 

Equations (8a) and (8b) along with the initial and 
boundary conditions of eqs. (9a) ,  (9b),  and ( 13) 
then could be integrated for this special case. Figures 
3 and 4 compare the predictions by the present 
model with a exponential concentration-dependent 
diffusion coefficient and the observed data of Mo- 
tomura and M ~ r i t a . ~  The agreement between the 
predicted and measured values are excellent for both 
dimensionless times, significantly better than the 
similar comparison of Sada et al.” using a model 
with a constant diffusion coefficient. This reveals 
the concentration dependence of the dye diffusion 
coefficient in this particular reactive dyeing system. 

Figure 5 demonstrates the effect of the concen- 
tration dependence of the diffusion coe’fficient on 
the total fractional fixation W,,, and the dimension- 
less dye concentration in the bath Y b .  It is apparent 
that an increase in the diffusion coefficient at high 
dye concentration strongly promotes the total frac- 
tional fixation and depresses the dye concentration 
in the bath. Hence, the concentration dependence 
of the dye diffusion coefficient tends to positively 
benefit the dyeing process. 
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Figure 5 
wi thM= 1 0 , S h = 5 , S = 0 . 0 0 1 , ~ = 0 . 5 , a n d a = 0 . 5 : ( - - - - - ) a l  = 1.378;(-)al=0. 

Effect of concentration dependence of the diffusion coefficient on W,,, and Yb 

The factor M represents the ratio of the dye re- 
action rate to the internal dye diffusion rate. The 
effect of this parameter on the total fractional fix- 
ation and the dye concentration in the dyebath is 
displayed in Figure 6. An increase in M corresponds 
to a higher dye reaction rate or a lower internal dye 
diffusion, both of which yield a higher W,,, and a 
lower Yb. Similar effects of M were also observed 
by Sada et al.I5 for the case with a constant diffusion 
coefficient. The effects appear to be more pro- 
nounced for the present case with the concentration- 

dependent diffusion coefficient, due primarily to the 
reduced internal mass transfer resistance of the dye. 

In practice, a mixer is provided in the dyebath in 
most dyeing processes. Mixing not only provides 
more uniform dye concentration in the dyebath 
(thus avoiding uneven dyeing of the fiber substrate), 
but also reduces the external dye transfer resistance. 
The extent of mixing is represented by the Sherwood 
number. Complete and no mixings in the dyebath 
are the two extreme cases with infinite and zero 
Sherwood numbers. In most practical situations, the 

Dimensionless Time, 8 

Figure 6 Effect of M on W,, and Yb with Sh = 5, S = 0.001, ,8 = 0.5, al = 1.378, and (Y 

= 0.5: ( -  .- .-) M = 1; (-) M = 10; ( - -  - - - )  M = 100. 
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Figure 7 
@=0.5 ,a l=  1.378,anda=0.5:(---.-)Sh= m ; ( - - - - - ) S h = 5 0 ; ( - ) S h = 5 .  

Effect of the Sherwood number on W,, and Yb with M = 10, S = 0.001, 

Sherwood number will be between these two ex- 
tremes. Figure 7 shows the effect of the Shenvood 
number ( S h )  on W,,, and Ys. The effect appears to 
diminish with an increase in Sh. LinZ0 has shown 
that the external mass transfer resistance becomes 
negligible when Sh is larger than 100. This is also 
evident in Figure 7 because of the closeness of both 
the W, and Y b  curves for Sh = 50 and Sh = 00.  

The volume ratio of the fiber substrate to the 
dyebath is represented by the parameter 0. A small 
0 implies a small amount of fiber substrate immersed 
in a large dyebath. Hence, the dye concentration in 
the dyebath will decrease slowly at a small 0, as seen 

in Figure 8. A slow decrease of Yb helps maintain a 
relatively high concentration gradient across the 
liquid/ fiber interface and indirectly benefits the to- 
tal fractional fixation. But as seen in Figure 8, such. 
a benefit is not of the same order of magnitude as 
are the other factors, like the bath mixing, dye re- 
action rate, and the concentration dependence of 
the diffusion coefficient. 

CONCLUSIONS 

An extended dye diffusion model for the reactive 
dyeing process is presented in this study by consid- 

01 0.2 0.4 06 0-8 I 2 4 6 810 
Dimensionless Time, 0 

Figure 8 
al = 1.378, and a = 0.5: (-) @ = 0.5; ( - - - - - )  @ = 0.2. 

Effect of fiber substrate ratio on W,, and Yb with M = 10, Sh = 5,  S = 0.001, 
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ering the effect of a concentration-dependent dif- 
fusion coefficient. A general exponential polynomial 
function is suggested to represent the concentration 
dependence of the diffusion coefficient of the dye. 
The present model is shown to predict significantly 
better the experimental dye concentration profiles 
than did the previous model with a constant diffu- 
sion coefficient. The physical model is employed to 
examine the effects of the concentration dependence 
of the diffusion coefficient, mixing in the dyebath, 
dye reaction rate, and volume ratio of fiber substrate 
to dyebath on the total fractional fixation of the 
fiber substrate and the dye concentration in the 
dyebath. It is observed that the effect of the volume 
ratio of the fiber substrate to the dyebath on the 
fractional fiber fixation is not of the same order of 
magnitude as those of the other three factors. 

NOMENCLATURE 

constants in the concentration-dependent 
function of the diffusion coefficient 

cross-sectional area of the fiber substrate 
dye concentration in the fiber substrate 
dye concentration in the dyebath 
initial dye concentration in the dyebath 
concentration of reactive sites in the fiber 

initial concentration of reactive sites in the 

concentration-dependent diffusion coeffi- 

reference diffusion coefficient of the dye 
concentration-dependent diffusion coeffi- 

reaction rate of the dye in the fiber substrate 
external mass transfer coefficient 
rate of dye hydrolysis 
thickness of the fiber substrate 
stoichiometric constant of dye reaction 
ratio of dye reaction rate to dye diffusion 

ratio of dye hydrolysis rate to diffusion rate, 

Ratio of dye hydrolysis to dye reaction 

Sherwood number, kLL/Do 
time 
volume of dyebath 
local fractional fixation of the fiber sub- 

substrate 

fiber substrate 

cient of the dye 

cient function 

rate, kCsoL2/Do 

kw L /Do 

rates, k w / (  kC,) 

strate, defined by eq. (10) 

W,, 

X spatial coordinate 
X 

total fractional fixation of the fiber sub- 
strate, defined by eq. (11) 

dimensionless spatial coordinate, ( L - x ) / L 

Creek Symbols 

a 
csa 

6 

0 dimensionless time, tDo /L2  

dimensionless initial dye concentration, mCW/ 

ratio of fiber substrate volume to dyebath vol- 
ume, AL/V 
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